近日,国泰君安发布氢能研究报告,报告针对电解水制氢的不同技术路线做出详细分析。报告作出预判,未来,PEM制氢技术有可能成为低成本制氢的主流技术。
电解水制氢有四大技术路径,碱性(ALK)、质子交换膜(PEM)、阴离子交换膜(AEM)和高温固体氧化物(SOEC);其中,较为成熟的是ALK和PEM。
电解水制氢技术的主流是谁
电解水制氢有四大技术路径,碱性(ALK)、质子交换膜(PEM)、阴离子交换膜(AEM)和高温固体氧化物(SOEC);其中,较为成熟的是ALK和PEM。目前,ALK是电解水制氢市场的主流应用。ALK的优点是设备成本低,缺点是电耗高、体积大、灵活性差;PEM的电耗低、体积小、灵活性高,但设备成本高昂阻碍了其大规模应用。
以一台1MW(产氢200Nm3/h)电解槽为例,ALK电解槽成本为80万元,而PEM电解槽成本超300万元。目前,业内基于全新的直通孔结构多孔传输层,开发出“六合一”一体化结构,有望将1MW的PEM电解槽成本降至150万元,大幅提高PEM制氢经济性。
未来,PEM制氢技术对ALK制氢技术,能否再现当年光伏行业单晶硅对多晶硅的替代,我们拭目以待。
从无序化→有序化的迭代
PEM电解槽有三个关键组成部分:①膜电极(质子交换膜、阴极铂催化剂、阳极铱催化剂);②多孔传输层(阴极碳基气体扩散层GDL、阳极钛基多孔传输层PTL);③钛双极板。电解水制氢过程中,去离子水从阳极侧钛板流道流入,经阳极PTL输送至阳极铱催化层,在其表面发生氧化反应产生O2和H+,O2经阳极PTL从阳极钛极板收集流出,H+穿过质子交换膜在阴极铂催化层发生还原反应产生H2,H2再经阴极GDL从阴极钛极板收集流出。
多孔传输层(Porous Transport Layer, PTL)位于双极板和阳极催化剂层之间,在阳极析氧反应中起到输水(反应水流入)、排气(氧气泡排出)、导热(热量导出)、导电作用。
产业界中,阳极多孔传输层经历了钛网→钛粒烧结板→钛纤维烧结毡(简称钛毡)等结构,钛毡因为制作工艺简单、孔隙率高等特点,是当前国内外多孔传输层的普遍选择。
全球主要供应商为比利时贝卡尔特,国内钛毡厂家则主要来自过滤材料的生产企业。
阳极多孔传输层是气、液、电、热四相场的集成。
①PTL是气、液的交汇场,反应水经PTL进来,生成的氧气泡经PTL出去,要尽可能让水、气的双向流动更顺畅、减少对流阻力;传统钛毡结构是无序化的,其内部孔道结构分布随机,导致反应水和氧气泡在其内部传输阻力较大。
②PTL要承担导电的功能,需要尽可能增大与催化层的接触面;钛毡与催化剂层的接触为线接触,接触面较小,导致气、液、固三相交界的电化学反应位点较少,阻抗偏高。
③PTL的结构会对与其接触的膜电极造成影响;钛毡表面的孔径大小不一,标准差大,较大孔径甚至可能会超过100微米,在阴阳极压差(3.5MPa)下易将膜电极“挤”进孔道,产生膜电极“鼓包”;同时,较大孔径处更易反应、损耗更多,“短板效应”会缩短膜电极整体寿命。
针对钛毡结构的不足,行业内开发出全新的直通孔结构多孔传输层(简称SP-PTL,Straight Pore-PTL)。
从第一性原理看,直通孔结构多孔传输层①孔道上下直通,进水、排氧气更顺畅,大电流密度下优势更明显;
②与催化剂层为面接触,较大幅度降低接触面电阻;
③孔道尺寸小于主流PEM膜的厚度、且孔尺寸均一、标准差小,不易产生膜电极鼓包和反应不均一问题。1MW的PEM电解槽,未镀铂钛毡的成本为23万元,未镀铂直通孔结构的成本仅9万元,成本下降60%。
此外,钛毡的结构特点决定了其最适宜的镀层方式为水电镀,而不太适宜更节省贵金属的PVD物理气相沉积法。钛毡结构内部导电是通过钛丝与钛丝的烧结点,在阳极强氧化、强酸环境下,通常需要将钛毡内部的所有钛丝烧结点均浸没在电镀液中,镀上铂金保护层,以保证寿命。
PEM“六合一”成为 降本利器
直通孔结构多孔传输层是“六合一”结构的灵魂。
“六合一”结构是将直通孔结构多孔传输层、细目钛网、粗目钛网、钛平板双极板、粗目钛网、细目钛网这六层组件按顺序焊接成一体化器件,替代现有的“钛毡+蚀刻钛双极板”。直通孔结构在“六合一”中的作用难以被钛毡取代,
一是钛毡本身在性能上不及直通孔结构效率高,二是直通孔结构与钛网为面接触,其焊接点牢固程度要远大于钛毡与钛网间的线接触,寿命更长。三是直通孔结构下的镀层成本要比钛毡低很多。直通孔结构的“六合一”,可采用PVD物理镀法,对直通孔结构多孔传输层阳极侧进行单面镀铂;若采用钛毡,为保证寿命,需对钛毡及整个“六合一”进行水电镀化学镀法,贵金属用量大大增加。
相较于现有的“钛毡+蚀刻双极板+三面镀铂”,PEM“六合一”结构降低了三方面成本:
一是用钛网替代流场,减少了钛双极板的蚀刻成本。标准化的钛网成本远低于蚀刻双极板,同时,粗目钛网+细目钛网,与SP-PTL形成三级梯度结构,三级梯度的孔径为等比,更有利于氧气泡的排出。
二是“直通孔结构多孔传输层+粗目/细目钛网+钛双极板”六层组件焊接成一体化器件,减少了2面铂镀层成本。在现有结构中,需要对钛毡两面、蚀刻钛双极板阳极面,共计3面镀铂。在PEM“六合一”中,仅需对直通孔结构与阳极催化层接触面镀铂,极大降低贵金属用量。PEM器件的一体化还减少了多层接触面电阻,降低电解电压,提高了电解效率。
三是在镀层技术选择上,钛毡因其内部结构复杂,海外常采用电镀法确保其寿命;而直通孔结构可直接采用PVD镀层法,镀层方法简单,贵金属铂用量可减少50%以上。按1MW的PEM电解槽测算,现有钛毡+蚀刻钛双极板(含三面镀层)为190万元,“六合一”结构(含一面镀层)成本仅为30万元,成本下降85%。
以1MW的PEM电解槽为例,工作电压1.85V、电流密度1.85A/cm2,50-60℃工况,N115膜。
现有“钛毡+蚀刻双极板”结构下,PEM电解槽电堆成本313万元,“六合一”结构下,PEM电解槽电堆成本仅150万元,成本下降50%。若在PEM“六合一”基础上,考虑膜电极技术进步,如质子交换膜国产化、铱催化剂载量降低,PEM电解槽电堆成本不超过100万元。
目前,业内已有不少企业开始尝试革命性的直通孔结构多孔传输层,以及全新的“六合一”结构,PEM制氢技术的进步和降本如火如荼。星星之火,可以燎原。相信在这些具备开拓精神企业的引领下,中国氢能产业必将接棒锂电、光伏和风电,成为中国新能源的新名片。
来源:国泰君安证券、产业观察者